大家好,今天小编关注到一个比较有意思的话题,就是关于泰勒展开书籍推荐的问题,于是小编就整理了5个相关介绍泰勒展开书籍推荐的解答,让我们一起看看吧。
高中常用十个泰勒展开公式?
1、e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+……
2、ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1)
3、sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞
4、cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞
5、arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)
泰勒公式使用的范围?
泰勒公式的使用条件:实际应用中,泰勒公式需要截断,只取有限项,一个函数的有限项的泰勒级数叫做泰勒展开式。 泰勒展开式的重要性体现在以下五个方面:
1、幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。
2、一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。
3、泰勒级数可以用来近似计算函数的值,并估计误差。
4、证明不等式。
arcsinx泰勒展开公式推导详解?
设f(x)=arcsinx f (0)=0
(arcsinx)'=1/√1-x^2 f'(0)=1
(arcsinx)''=x(1-x^2)^(-3/2) f''(0)=0
(arcsinx)'''=(1-x^2)^(-3/2)+3x^2(1-x^2)^(-5/2) f'''(0)=1
f(x)=arcsinx在x=0点展开的三阶泰勒公式
为:
arcsinx=f(0)+f'(0)x+(1/2)f''(0)x^2+(1/6)f'''(0)x^3+o(x^4) 代入以上数值:
=x+(1/6)x^3+o(x^4)
tanx的泰勒展开公式?
tanx的泰勒公式是:tanx=x+x^3/3+2x^5/15+17x^7/315+62x^9/2835+…+[2^(2n)*(2^(2n)-1)*B(2n-1)*x^(2n-1)]/(2n)!+……(|x|<π/2)。
泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。
什么时候选择使用泰勒公式?
泰勒公式是在一点处展开,函数必须在那一点处n阶倒数存在,在x=0处是麦克劳林展开式,一般在极限里面用的是麦克劳林展开公式,所以必须x趋于0的时候。
泰勒公式还给出了余项,即是这个多项式与函数之间的偏差,余项根据需要有多种不同的形式。
泰勒公式有许多作用,诸如求近似值、求极限、求参数取值、证明函数不等式等等。
到此,以上就是小编对于泰勒展开书籍推荐的问题就介绍到这了,希望介绍关于泰勒展开书籍推荐的5点解答对大家有用。